Progress in Inverse Spectral Geometry - Trends in Mathematics - Stig I. Andersson - Livros - Springer Basel - 9783034898355 - 12 de outubro de 2012
Caso a capa e o título não sejam correspondentes, considere o título como correto

Progress in Inverse Spectral Geometry - Trends in Mathematics Softcover reprint of the original 1st ed. 1997 edition

Stig I. Andersson

Preço
₺ 2.249
excluindo impostos

Item sob encomenda (no estoque do fornecedor)

Espera-se estar pronto para envio 4 - 8 de ago
Adicione à sua lista de desejos do iMusic

Também disponível como:

Progress in Inverse Spectral Geometry - Trends in Mathematics Softcover reprint of the original 1st ed. 1997 edition

most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t) uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* ®E), locally given by 00 K(x, y; t) = L>-IAk(~k ® 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g. , the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for­ malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.


202 pages, 14 black & white illustrations

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 12 de outubro de 2012
Data do lançamento original 1997
ISBN13 9783034898355
Editoras Springer Basel
Páginas 197
Dimensões 155 × 235 × 11 mm   ·   303 g
Idioma English