Metrical Theory of Continued Fractions - Mathematics and Its Applications - Marius Iosifescu - Livros - Springer - 9789048161300 - 9 de dezembro de 2010
Caso a capa e o título não sejam correspondentes, considere o título como correto

Metrical Theory of Continued Fractions - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 2002 edition

Preço
NZ$ 190
excluindo impostos

Item sob encomenda (no estoque do fornecedor)

Espera-se estar pronto para envio 15 - 19 de dez
Presentes de Natal podem ser trocados até 31 de janeiro
Adicione à sua lista de desejos do iMusic

Também disponível como:

This monograph is intended to be a complete treatment of the metrical the­ ory of the (regular) continued fraction expansion and related representations of real numbers. We have attempted to give the best possible results known so far, with proofs which are the simplest and most direct. The book has had a long gestation period because we first decided to write it in March 1994. This gave us the possibility of essentially improving the initial versions of many parts of it. Even if the two authors are different in style and approach, every effort has been made to hide the differences. Let 0 denote the set of irrationals in I = [0,1]. Define the (reg­ ular) continued fraction transformation T by T (w) = fractional part of n 1/w, w E O. Write T for the nth iterate of T, n E N = {O, 1, ... }, n 1 with TO = identity map. The positive integers an(w) = al(T - (W)), n E N+ = {1,2··· }, where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···], w E O.


383 pages, biography

Mídia Livros     Paperback Book   (Livro de capa flexível e brochura)
Lançado 9 de dezembro de 2010
ISBN13 9789048161300
Editoras Springer
Páginas 383
Dimensões 156 × 234 × 21 mm   ·   562 g
Idioma Inglês  

Mostrar tudo

Mais por Marius Iosifescu